CONCERNING CELLULAR DECOMPOSITIONS OF 3-MANIFOLDS WITH BOUNDARY

BY STEVE ARMENTROUT(1)

1. **Introduction.** In [2], we proved that if G is a cellular decomposition of a 3-manifold M such that the associated decomposition space is a 3-manifold N, then M and N are homeomorphic. In this paper we shall establish a related result for 3-manifolds with boundary. We shall show that if G is a cellular decomposition of a 3-manifold with boundary M such that the associated decomposition space is a 3-manifold with boundary N, then M and N are homeomorphic.

The techniques of this paper have applications to the study of embeddings of curves and surfaces in 3-manifolds. Suppose that M is a 3-manifold with boundary and G is a cellular decomposition of M such that the associated decomposition space is a 3-manifold with boundary N. By Theorem 2 of this paper, M and N are homeomorphic. Suppose K is a surface or a curve in M such that no nondegenerate element of G intersects K. If P denotes the projection map from M onto N, then P|K is a homeomorphism. It is natural to ask the following: Is P[K] embedded in N the same way that K is embedded in M? In §5, we give an affirmative answer to this question. In particular, K is tame if and only if P[K] is tame.

In $\S 6$ we shall show that if G is a cellular decomposition of a 3-manifold with boundary into a 3-manifold with boundary, then the projection map can be approximated arbitrarily closely by homeomorphisms.

In [2], we established a theorem of basic importance in the study of cellular decompositions of 3-manifolds that yield 3-manifolds as their decomposition spaces. The main result, Theorem 1, of this paper is a useful corollary of the results of [2]. The results mentioned in the preceding two paragraphs are applications of Theorem 1. In [4], we shall apply Theorem 1 to the study of shrinkability conditions which are satisfied by certain cellular decompositions of E^3 that yield E^3 as their decomposition space.

2. **Terminology and notation.** The statement that M is a 3-manifold with boundary means that M is a separable metric space such that each point of M has a neighborhood in M which is a 3-cell. If M is a 3-manifold with boundary, a point p of M is an interior point of M if and only if p has an open neighborhood in M which is an open 3-cell. The interior of M, Int M, is the set of all boundary points,

Received by the editors January 25, 1968.

⁽¹⁾ This research was supported in part by the National Science Foundation under Grant No. GP-3857.

and the boundary of M, Bd M, is M-Int M. The statement that M is a 3-manifold means that M is a 3-manifold with boundary such that Bd M is void.

If M is a 3-manifold with boundary, a set X in M is a *cellular* subset of M if and only if there exists a sequence C_1, C_2, C_3, \ldots of 3-cells in M such that (1) for each positive integer n, $C_{n+1} \subset \operatorname{Int} C_n$, and (2) $X = \bigcap_{i=1}^{\infty} C_i$. Note that a cellular subset of a 3-manifold with boundary M necessarily lies in the interior of M.

If M is a 3-manifold with boundary, the statement that G is a *cellular decomposition* of M means that G is an upper semicontinuous decomposition of M such that each element of G is a cellular subset of M.

If X is a topological space and G is an upper semicontinuous decomposition of X, then X/G denotes the associated decomposition space, P denotes the projection map from X onto X/G, and H_G denotes the union of all the nondegenerate elements of G.

If A is a set in a topological space X, let βA denote the (topological) boundary of A, and let Cl A denote the closure of A. If X is a metric space, $A \subseteq X$, and ε is a positive number, then $V(\varepsilon, A)$ denotes the open ε -neighborhood of A.

3. The main result. The purpose of this section is to establish the main result of the paper. We shall depend heavily on the following result from [2].

THEOREM 1 OF [2]. Suppose that M is a 3-manifold and G is a cellular decomposition of M such that M/G is a 3-manifold N. Suppose that N has a triangulation T such that if σ is a simplex of T, $P^{-1}[\sigma]$ lies in an open 3-cell U_{σ} in M. Then there exists a triangulation Σ of M and an isomorphism ϕ from T onto Σ such that for each simplex σ of T, $\phi(\sigma) \subset U_{\sigma}$.

THEOREM 1. Suppose M is a 3-manifold with boundary and G is a cellular decomposition of M such that M/G is a 3-manifold with boundary N. Suppose U is an open set in Int N such that βU misses $P[H_G]$. Then there is a homeomorphism h from $Cl\ P^{-1}[U]$ onto $Cl\ U$ such that $h|\beta P^{-1}[U] = P|\beta P^{-1}[U]$.

Proof. We shall apply Theorem 1 of [2], and we have some preliminary steps to take before we can apply Theorem 1 of [2].

For each positive integer k, let A_k be the union of all the sets of G lying in $P^{-1}[U]$ and of diameter at least 1/k. Then by upper semicontinuity of G, A_k is closed. It follows that there exists a sequence V_1, V_2, V_3, \ldots of open sets in M such that for each positive integer i, V_i contains $\beta P^{-1}[U]$, $\overline{V}_{i+1} \subset V_i$, \overline{V}_i and A_i are disjoint, and $V_i \subset V(1/i, \beta P^{-1}[U])$. There is an open covering \mathscr{W} of $P^{-1}[U]$ such that (1) if $W \in \mathscr{W}$, W is an open 3-cell and $\overline{W} \subset P^{-1}[U]$, (2) if n is any positive integer, W is a set of \mathscr{W} , and W intersects \overline{V}_{n+1} , then (diam W) < 1/n, and (3) if $g \in G$ and $g \subset P^{-1}[U]$, then there is a set W of \mathscr{W} such that $g \subset W$. Such a set \mathscr{W} may be constructed in the following way. If $g \in G$ and $g \subset A_1$, there is an open 3-cell W_g such that $g \subset W_g$, $\overline{W}_g \subset P^{-1}[U]$, and W_g and \overline{V}_1 are disjoint. If $g \in G$ and $g \subset A_2 - A_1$, there is an open 3-cell W_g such that $g \subset W_g$, $\overline{W}_g \subset P^{-1}[U]$, (diam W_g) < 1, and W_g and \overline{V}_2 are disjoint. If n is any positive integer, n > 1, $g \in G$, and $g \subset A_n - A_{n-1}$,

there is an open 3-cell W_g such that $g \subset W_g$, $\overline{W}_g \subset P^{-1}[U]$, (diam W_g) < 1/(n-1), and W_g and \overline{V}_n are disjoint. Let \mathscr{W} be the collection of all such sets W_g for the elements g of G lying in $P^{-1}[U]$.

We shall show that if n is any positive integer, W is a set of W, and W intersects \overline{V}_{n+1} , then (diam W) < 1/n. If W intersects \overline{V}_{n+1} and g is any set of G lying in A_{n+1} , then W is distinct from W_g . It follows that (diam W_g) < 1/n. The remaining properties of W are evident.

There is a triangulation T of U such that (1) if n is a positive integer, $\sigma \in T$, and σ intersects $P[V_n]$, then (diam σ) < 1/n, and (2) if $\sigma \in T$, then $P^{-1}[\sigma]$ lies in some set of \mathcal{W} . For each simplex σ of T, let W_{σ} be some open 3-cell of \mathcal{W} such that $P^{-1}[\sigma] \subset W_{\sigma}$.

Let G_0 be the set of all elements of G contained in $P^{-1}[U]$. Then G_0 is a cellular decomposition of the 3-manifold $P^{-1}[U]$. By Theorem 1 of [2], there exist a triangulation Σ of $P^{-1}[U]$ and an isomorphism ϕ from T onto Σ such that if $\sigma \in T$, $\phi(\sigma) \subseteq W_{\sigma}$.

Since ϕ^{-1} is an isomorphism from Σ onto T, by the proof of Lemma 8 of [2], there is a homeomorphism h_0 from $P^{-1}[U]$ onto U such that if σ is a simplex of Σ , then $h_0[\sigma] = \phi^{-1}(\sigma)$. Define a function h as follows: (1) If $x \in P^{-1}[U]$, then $h(x) = h_0(x)$. (2) If $x \in \beta P^{-1}[U]$, then h(x) = P(x). Since $P^{-1}[\beta U] = \beta P^{-1}[U]$, and $\beta P^{-1}[U]$ are disjoint, h is well defined. Clearly h is from Cl $P^{-1}[U]$, and since h_0 is onto U and $P|\beta P^{-1}[U]$ is onto βU , h is onto Cl U. By definition of h, $h|\beta P^{-1}[U] = P|\beta P^{-1}[U]$. In order to complete the proof of Theorem 1, we need only to show that h is a homeomorphism.

Since βU misses $P[H_G]$, P is one-to-one on $\beta P^{-1}[U]$. Since h_0 is one-to-one, it follows that h is one-to-one.

Now we shall prove that h is continuous. Clearly, it is sufficient to show that if x_1, x_2, x_3, \ldots is a sequence of points in $P^{-1}[U]$ and converging to the point x_0 of $\beta P^{-1}[U]$, then $h(x_1), h(x_2), h(x_3), \ldots$ converges to $h(x_0)$, or, in view of the definition of h, to $P(x_0)$.

For each positive integer i, let τ_i be a 3-simplex of Σ containing x_i , and let σ_i be $\phi^{-1}(\tau_i)$. By construction of h, $h(x_i) \in \sigma_i$. Now x_1, x_2, x_3, \ldots converges to x_0 and $x_0 \in \beta P^{-1}[U]$. Further, for each positive integer i, $\tau_i \subset W_{\sigma_i}$. It follows from these facts and properties of \mathcal{W} that (diam τ_1), (diam τ_2), (diam τ_3), ... converges to 0.

Let Q be a neighborhood of $h(x_0)$. Since $h(x_0) = P(x_0)$ and $\{x_0\}$ is an element of G, $P^{-1}[Q]$ is a neighborhood of x_0 . From facts mentioned in the preceding paragraph, it follows that there is a positive integer s such that if n > s, $\tau_n \subset P^{-1}[Q]$. It follows from facts about the construction of $\mathscr W$ that there is a positive integer t greater than s such that if n > t, $W_{\sigma_n} \subset P^{-1}[Q]$. Hence if n > t, $P[W_{\sigma_n}] \subset Q$. The open covering $\mathscr W$ has the property that if $\sigma \in T$, $P^{-1}[\sigma] \subset W_{\sigma}$. Hence for each positive integer n, $P^{-1}[\sigma_n] \subset W_{\sigma_n}$, and if n > t, then both $\sigma_n \subset P[W_{\sigma_n}] \subset Q$ and $h(x_n) \in Q$. It follows that $h(x_1), h(x_2), h(x_3), \ldots$ converges to $h(x_0)$. Consequently h is continuous.

Now we shall prove that h^{-1} is continuous. It is sufficient to show that if

 y_1, y_2, y_3, \ldots is a sequence of points in U converging to the point y_0 of βU , then $h^{-1}(y_1), h^{-1}(y_2), h^{-1}(y_3), \ldots$ converges to $h^{-1}(y_0)$, or equivalently, to $P^{-1}[y_0]$.

For each positive integer i, let σ_i be a 3-simplex of T containing y_i , and let τ_i be $\phi(\sigma_i)$. By construction of h, for each i, $h^{-1}(y_i) \in \tau_i$.

Suppose R is a neighborhood of $P^{-1}[y_0]$. Since $\{P^{-1}[y_0]\}$ is an element of G, there is a neighborhood R_0 of $P^{-1}[y_0]$ such that $R_0 \subseteq R$, R_0 is a union of elements of G, and if $W \in \mathcal{W}$ and W intersects R_0 , then $W \subseteq R$. Notice that $P[R_0]$ is a neighborhood in N of y_0 .

There is a positive integer t such that if n > t, $y_n \in P[R_0]$. If n > t, $P^{-1}[y_n] \in R_0$. Since for each i, $P^{-1}[\sigma_i] \subset W_{\sigma_i}$ and $y_i \in \sigma_i$, then if i > t, W_{σ_i} intersects R_0 and hence lies in R. By construction of Σ , it follows that for each i, $\tau_i \subset W_{\sigma_i}$, and hence if i > t, $\tau_i \subset R$ and therefore $h^{-1}(y_i) \in R$. It follows that $h^{-1}(y_1)$, $h^{-1}(y_2)$, $h^{-1}(y_3)$, ... converges to $P^{-1}[y_0]$, or to $h^{-1}(y_0)$. Hence h^{-1} is continuous.

Therefore h is a homeomorphism from Cl $P^{-1}[U]$ onto Cl U such that $h|\beta P^{-1}[U] = P|\beta P^{-1}[U]$. This establishes Theorem 1.

- 4. Application to 3-manifolds with boundary. We are now prepared to extend Theorem 2 of [2] to the case of cellular decompositions of 3-manifolds with boundary.
- THEOREM 2. Suppose M is a 3-manifold with boundary and G is a cellular decomposition of M such that M/G is a 3-manifold with boundary N. Then there is a homeomorphism h from M onto N such that $h|\operatorname{Bd} M=P|\operatorname{Bd} M$.
- **Proof.** Int N is an open subset of N lying in Int N, and $\beta(\text{Int } N) = \text{Bd } N$. Further, $P^{-1}[\text{Int } N] = \text{Int } M$, and $P^{-1}[\beta(\text{Int } N)] = \text{Bd } M$. We also have that Cl Int M = M and Cl Int N = N. With the aid of Theorem 1, it follows that there exists a homeomorphism h from M onto N such that h|Bd M = P|Bd M.
- 5. Applications to embeddings. In this section we establish some results concerning embeddings of surfaces and curves in manifolds. Our first result is a slightly more general theorem.
- THEOREM 3. Suppose that M is a 3-manifold with boundary and G is a cellular decomposition of M such that M/G is a 3-manifold with boundary N. Suppose that K is a closed nowhere dense subset of M such that K and H_G are disjoint. Then there is a homeomorphism h from M onto N such that h|K=P|K.
- **Proof.** This follows by applying Theorem 1 to the open subset (Int M) K of M. Since K is nowhere dense in M, Cl [(Int M) K] = M, and it follows that there exists a homeomorphism h from M onto N such that $h|(K \cup \operatorname{Bd} M) = P|(K \cup \operatorname{Bd} M)$. In particular, h|K = P|K.

COROLLARY 1. Suppose that M is a 3-manifold with boundary and G is a cellular decomposition of M such that M/G is a 3-manifold with boundary N. Suppose K is a

manifold with boundary, of dimension 1 or 2, contained in M, and missing H_G . Then there is a homeomorphism h from M onto N such that h|K=P|K.

The next two corollaries may be regarded as extensions of Theorem 1 of [1].

COROLLARY 2. Suppose that M is a 3-manifold with boundary and G is a cellular decomposition of M such that M/G is a 3-manifold with boundary. Suppose K is a 2-manifold with boundary in M such that K misses H_G . Then P[K] is tame in N if and only if K is tame in M.

A compact connected set X in E^3 is pointlike in E^3 if and only if $E^3 - X$ is homeomorphic to $E^3 - \{0\}$. It is well known (see [6]) that in E^3 , "pointlike" and "cellular" are equivalent. By a pointlike decomposition of E^3 is meant an upper semicontinuous decomposition of E^3 into pointlike compact connected sets.

COROLLARY 3. Suppose that G is a pointlike decomposition of E^3 such that E^3/G is homeomorphic to E^3 . Suppose K is a 2-manifold in E^3 such that K misses H_G . Then P[K] is tame if and only if K is tame.

COROLLARY 4. Suppose that G is a pointlike decomposition of E^3 such that E^3/G is homeomorphic to E^3 . Suppose that J is an arc or a simple closed curve in E^3 such that J misses H_G . Then P[J] is tame if and only if J is tame.

It follows from results of [3] and [5] that under the hypothesis of Corollary 4, if J is a simple closed curve, $\pi_1(E^3-J)$ and $\pi_1(E^3-P[J])$ are isomorphic. Corollary 1 gives a considerably stronger result in this case.

- 6. Approximating the projection map. The result of this section shows that if G is a cellular decomposition of a 3-manifold with boundary into a 3-manifold with boundary, then the projection map can be approximated arbitrarily closely by homeomorphisms. D. R. McMillan, Jr. raised the question as to whether such approximations are possible.
- THEOREM 4. Suppose that M is a 3-manifold with boundary and G is a cellular decomposition of M such that M/G is a 3-manifold with boundary N. Suppose U is an open set in Int M containing H_G and ε is a positive number. Then there exists a homeomorphism M from M onto M such that (1) if M is a 3-manifold with boundary M is a 3-manifold with boundary M. Suppose M is a 3-manifold with boundary M in M is a 3-manifold with boundary M in M in M is a 3-manifold with boundary M in M in M is a 3-manifold with boundary M in M in M in M is a 3-manifold with boundary M in M

Proof. The proof of this theorem is a modification of the proof of Theorem 1 above. Let \mathscr{A} be an open covering of N by sets of diameter less than $\varepsilon/2$. Let V_1, V_2, V_3, \ldots be as in the proof of Theorem 1. There is an open covering \mathscr{W} of U such that (1) if $W \in \mathscr{W}$, W is an open 3-cell and $\overline{W} \subset U$, (2) if n is any positive integer, $W \in \mathscr{W}$, and W intersects \overline{V}_{n+1} , then (diam W) < 1/n, (3) if $g \in G$ and $g \subset P^{-1}[U]$, then g lies in some set of \mathscr{W} , and (4) if $W \in \mathscr{W}$, there is a set A of \mathscr{A} such that $P[W] \subseteq A$.

Since $H_G \subset U$, P[U] is open in N. There is a triangulation T of P[U] such that (1) if n is any positive integer, $\sigma \in T$, and σ intersects $P[V_n]$, then (diam σ) < 1/n, and (2) if $\sigma \in T$, then $P^{-1}[\sigma]$ lies in some set of \mathcal{W} . For each simplex σ of T, let W_{σ} be some open 3-cell of \mathcal{W} such that $P^{-1}[\sigma] \subset W_{\sigma}$.

Let G_0 be the set of all elements of G contained in U. Then G_0 is a cellular decomposition of the 3-manifold U. By Theorem 1 of [2], there exist a triangulation Σ of U and an isomorphism ϕ from T onto Σ such that if $\sigma \in T$, $\phi(\sigma) \subseteq W_{\sigma}$. By the proof of Lemma 8 of [2], there is a homeomorphism h_0 from U onto P[U] such that if $\sigma \in \Sigma$, $h_0[\sigma] = \phi^{-1}(\sigma)$. Define a function h as follows: (1) If $x \in M - U$, h(x) = P(x). (2) If $x \in U$, $h(x) = h_0(x)$. As in the proof of Theorem 1, we may show that h is a homeomorphism from M onto N. By definition, if $x \in M - U$, h(x) = P(x).

We shall show now that if $x \in M$, $d(h(x), P(x)) < \varepsilon$. If $x \in M - U$, clearly $d(h(x), P(x)) < \varepsilon$. Suppose $x \in U$. Let σ be a 3-simplex of T containing P(x), and let τ be a 3-simplex of T containing h(x). We shall prove that $P[W_{\sigma}]$ and $P[W_{\tau}]$ intersect. First, since $P(x) \in \sigma$, $x \in P^{-1}[\sigma]$, and since $P^{-1}[\sigma] \subset W_{\sigma}$, then $x \in W_{\sigma}$. Second, since $h(x) \in \tau$, then by the way h is defined, $x \in \phi(\tau)$. Since $\phi(\tau) \subset W_{\tau}$, then $x \in W_{\tau}$. Hence $x \in W_{\sigma} \cap W_{\tau}$, and thus $P[W_{\sigma}]$ and $P[W_{\tau}]$ intersect.

By construction of \mathcal{W} , if $W \in \mathcal{W}$, then for some set A of \mathcal{A} , $P[W] \subseteq A$ and so $(\operatorname{diam} P[W]) < \varepsilon/2$. Since $x \in W_{\sigma}$, then $P(x) \in P[W_{\sigma}]$. Since $P^{-1}[\tau] \subseteq W_{\tau}$, then $\tau \subseteq P[W_{\tau}]$; since $h(x) \in \tau$, $h(x) \in P[W_{\tau}]$. It follows that $d(h(x), P(x)) < \varepsilon$. This completes the proof of Theorem 4.

REFERENCES

- 1. S. Armentrout, Upper semicontinuous decompositions of E^3 with at most countably many nondegenerate elements, Ann. of Math. 78 (1963), 605-618.
 - 2. ——, Cellular decompositions of 3-manifolds that yield 3-manifolds, (to appear).
 - 3. ——, Homotopy properties of decomposition spaces, (to appear).
- 4. ——, Shrinkability of certain decompositions of E^3 that yield E^3 , Illinois J. Math. (to appear).
- 5. S. Armentrout and T. M. Price, Decompositions into compact sets with UV properties, (to appear).
 - 6. D. G. Stewart, Cellular subsets of the 3-sphere, Trans. Amer. Math. Soc. 114 (1965), 10-22.

University of Iowa,
Iowa City, Iowa
University of Wisconsin,
Madison, Wisconsin